

From 2D materials to Energy Storage

CHRISTIAN PAPP

Angewandte Physikalische Chemie Freie Universität Berlin

Motivation

Microscopic understanding

 \rightarrow Adsorption / Dissociation

 CH_3

 \rightarrow Chemical bonds

CH₄

- \rightarrow Reaction
- \rightarrow Diffusion
- \rightarrow Desorption

Chemical Kinetics in Catalysis

- \rightarrow Intermediates
- \rightarrow Activation energy
- Growth / Functionalization
 - \rightarrow 2D materials
- Chemical analysis
 - \rightarrow Materials properties

Chemical modification of 2D materials

How can we tailor the properties of 2D materials with respect to specific applications?

Chemical modification of 2D materials

How can we tailor the properties of 2D materials with respect to specific applications?

Chemical modification of 2D materials

How can we tailor the properties of 2D materials with respect to specific applications?

Fundamental insights in surface reactions From flat surfaces to nanoclusters

Ordered nanocluster arrays on 2D materials → Reaction on nanoclusters

Papp, Catal. Lett. 147 (2017) 2. Düll, Papp, Phys. Chem. Chem. Phys. 21 (2019) 21287.

Spectroscopy of small clusters

→ Single atoms for chemistry under controlled conditions

Düll, et int., Papp Phys. Chem. Chem. Phys. 21 (2019) 21287

Supported Catalytically Active Liquid Metal Solutions

Highly dynamic surface Active site: Single Pd atom dynamically appearing at interface

Ab initio molecular dynamics simulation Görling et al.

Summary

- Model catalysis and surface science studies
 - from flat surfaces to nanoclusters
- 2D Materials
 - growth
 - Modification
- Single Atom Catalysis
 liquid metal catalysts
- Energy storage
 - LOHC (Liquid Organic Hydrogen Carriers)
 - strained molecules

